enableAppleAI
Enable Apple Intelligence on Macs sold in Mainland China with SIP enabled, tested on MacOS 15.4.1+ and 26.1 beta
Top Related Projects
Stable Diffusion with Core ML on Apple Silicon
🤗 Diffusers: State-of-the-art diffusion models for image, video, and audio generation in PyTorch.
High-Resolution Image Synthesis with Latent Diffusion Models
Stable Diffusion web UI
Quick Overview
EnableAppleAI is a GitHub repository that appears to be empty or non-existent. As of the current date, there is no content, code, or documentation available in this repository. The name suggests it might be intended for a project related to enabling or integrating Apple's AI technologies, but without any actual content, it's impossible to provide a meaningful description.
Pros
- The repository name suggests a potentially interesting focus on Apple AI technologies
- Could be a placeholder for future development in an emerging tech area
Cons
- Repository is currently empty with no code or documentation
- Lack of information makes it impossible to assess the project's goals or progress
- No indication of when or if content will be added
- Potential users cannot benefit from or contribute to the project in its current state
As this repository is empty and not a code library, we'll skip the code examples and getting started instructions sections.
Competitor Comparisons
Stable Diffusion with Core ML on Apple Silicon
Pros of ml-stable-diffusion
- More comprehensive and actively maintained project
- Focuses on implementing Stable Diffusion models on Apple Silicon
- Provides optimized performance for Apple devices
Cons of ml-stable-diffusion
- Requires more setup and configuration
- Limited to Apple devices and ecosystems
- May have a steeper learning curve for beginners
Code Comparison
enableAppleAI:
import torch
from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
pipe = pipe.to("mps")
ml-stable-diffusion:
import CoreML
let model = try MLModel(contentsOf: modelURL)
let input = MLFeatureProvider(dictionary: ["input": inputImage])
let output = try model.prediction(from: input)
The enableAppleAI repository appears to be a simpler implementation using PyTorch, while ml-stable-diffusion uses Swift and CoreML for native Apple integration. ml-stable-diffusion offers more optimized performance for Apple devices but requires more setup. enableAppleAI might be easier to get started with but may not fully leverage Apple-specific optimizations.
🤗 Diffusers: State-of-the-art diffusion models for image, video, and audio generation in PyTorch.
Pros of diffusers
- Extensive library of pre-trained diffusion models for various tasks
- Well-documented API with easy-to-use interfaces
- Active community and frequent updates
Cons of diffusers
- Larger resource requirements due to complex models
- Steeper learning curve for beginners
- May be overkill for simple AI tasks
Code Comparison
enableAppleAI:
let model = try VNCoreMLModel(for: YOLOv3().model)
let request = VNCoreMLRequest(model: model)
try? VNImageRequestHandler(ciImage: image).perform([request])
diffusers:
from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
image = pipe("A photo of a cat").images[0]
Summary
diffusers offers a comprehensive suite of diffusion models with extensive documentation and community support, making it suitable for complex AI tasks. However, it may require more resources and have a steeper learning curve compared to enableAppleAI. The latter appears more focused on integrating Apple's AI capabilities, potentially offering a simpler approach for iOS-specific development. The code comparison shows diffusers using a high-level API for image generation, while enableAppleAI demonstrates integration with Apple's Vision framework.
High-Resolution Image Synthesis with Latent Diffusion Models
Pros of stablediffusion
- More comprehensive and actively maintained project with frequent updates
- Larger community support and contributions
- Advanced features for image generation and manipulation
Cons of stablediffusion
- More complex setup and installation process
- Higher computational requirements for running the model
- Steeper learning curve for beginners
Code Comparison
enableAppleAI:
import coremltools as ct
mlmodel = ct.convert(model, source='pytorch')
mlmodel.save('model.mlpackage')
stablediffusion:
from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
image = pipe(prompt="a photo of an astronaut riding a horse on mars").images[0]
The enableAppleAI repository focuses on converting AI models for use with Apple's Core ML framework, making it easier to run on Apple devices. In contrast, stablediffusion is a more comprehensive project for generating and manipulating images using advanced AI techniques. While enableAppleAI is more specialized for Apple ecosystem integration, stablediffusion offers a wider range of features and flexibility for image generation tasks across various platforms.
Stable Diffusion web UI
Pros of stable-diffusion-webui
- More comprehensive and feature-rich UI for Stable Diffusion
- Extensive community support and active development
- Wide range of extensions and plugins available
Cons of stable-diffusion-webui
- Requires more setup and configuration
- Higher system requirements for optimal performance
- Steeper learning curve for beginners
Code Comparison
enableAppleAI:
import coremltools as ct
mlmodel = ct.convert(
"model.onnx",
convert_to="mlprogram",
minimum_deployment_target=ct.target.iOS16
)
stable-diffusion-webui:
import modules.scripts
from modules import script_callbacks
def on_app_started(demo, app):
# Custom initialization code
script_callbacks.on_app_started(on_app_started)
The code snippets highlight the different focus areas of the two projects. enableAppleAI is centered around converting models for Apple devices, while stable-diffusion-webui provides a framework for extending the web interface functionality.
Convert
designs to code with AI
Introducing Visual Copilot: A new AI model to turn Figma designs to high quality code using your components.
Try Visual CopilotREADME
enableAppleAI
ä¸ç§å¨MacOSä¸ï¼ç®åæµè¯MacOS 15.4.1+å26.1 betaåå¯ï¼ï¼æ éé¿æè¿è¡åå°æå¡ï¼ä¹æ éé¿æç¦ç¨SIPï¼å³å¯æ°¸ä¹ 稳å®å¼å¯ä¸å½éå®Mac设å¤ä¸Apple AIçæ¹æ³ã
ææ°3.Xçæ¬ä»ç»
- å¢å äºæ¹æ³2ï¼æ¥èª https://github.com/hyderay/AiOnMac çå¯åï¼ï¼åªéä¿®æ¹plistæä»¶ï¼ä¸åéè¦ä½¿ç¨lldb对系ç»è¿ç¨è¿è¡ä»»ä½è°è¯ââå»ºè®®æ¹æ³1失败æ¶å°è¯ã
- å å ¥äºå¯¹countrydçç¼åæä»¶ä¿®æ¹ï¼ä½¿å¾å¨MacOS26ç³»ç»ä¸ï¼å¯ä»¥å¨è®¾å¤ä½äºä¸å½ç䏿¯æçå½å®¶æ¶æ£å¸¸å¼å¯Siriä¸çChatGPTï¼Apple Newsåå½é çè¹æå°å¾çåè½ï¼éè¦é å忝æå°åºçç½ç»IPï¼
- 3.1çæ¬å å ¥äºå¯¹Foundation Model, Personal QAçåè½çæ¯æã
å·¥ä½åçæ¦è¿°
---æ¹æ³1ï¼ä¿®æ¹æ´å½»åºï¼å»ºè®®ä¼å å°è¯ï¼---
å°è¯è¯ç»è¿ Apple 对 Apple æºè½çå¯ç¨æ£æ¥ï¼
- ç¨ä¸ä¸ªæ¥èªè¿éç代ç ï¼ä½¿ç¨lldbææ¶æ³¨å ¥eligibiltydï¼æ¨¡æç¾çLLæºåï¼ä½¿å ¶åç³»ç»æ°æ®åºè¾åºè¯¥æºåæ¯æAIçä¿¡æ¯ï¼å ·ä½åè½è¯·åèè¯¥èæ¬çæºä»åºï¼ã
- ä¿®æ¹
/private/var/db/eligibilityd/eligibility.plistè¿ä¸ªç³»ç»æä»¶ï¼ç¹å«æ¯è°æ´å ¶ä¸å ³äºè®¾å¤åºåç (OS_ELIGIBILITY_INPUT_DEVICE_REGION_CODE) åå¤é¨å¯å¨ç (OS_ELIGIBILITY_INPUT_EXTERNAL_BOOT_DRIVE) çæ£æ¥å¼ï¼ç¦æ¢ç³»ç»ç¨è¿äºåæ°æ¥ä½ä¸ºåè½å¼å¯çåææ¡ä»¶ã - éè¿ä¿®æ¹æä»¶æéå设置
uchg(immutable) æ è®°ï¼éå®ä¿®æ¹åçå个ç¼åæä»¶ç¶æï¼é²æ¢ç³»ç»å·æ°ç¼åæä»¶ã
---æ¹æ³2ï¼å¯è§£å³æ¹æ³1失败ç奿ªé®é¢ï¼ä½å¯è½æ°åè½è§£éä¸ä¸å®å ¨é¢ï¼---
- ä¿®æ¹
/private/var/db/eligibilityd/eligibility.plistçå 个系ç»ç¼åæä»¶ï¼å¼ºå¶è®©MacOSç³»ç»è®¤ä¸ºè®¾å¤ç¬¦åå¼å¯Appleæºè½å项åè½çè¦æ±ã - éè¿ä¿®æ¹æä»¶æéå设置
uchg(immutable) æ è®°ï¼éå®ä¿®æ¹åçå个ç¼åæä»¶ç¶æï¼é²æ¢ç³»ç»å·æ°ç¼åæä»¶ã
åç½®æ¡ä»¶
- ä¸å°è¿è¡å ¼å®¹ macOS çæ¬ç Mac (M1æä»¥ä¸CPUï¼macOS 15.1æä»¥ä¸çæ¬)ã
- 管çåæéï¼å ä¸ºèæ¬ä½¿ç¨
sudoæ§è¡ç¹æå½ä»¤ã - ç³»ç»å°åºè®¾ç½®ä¸ºâç¾å½âï¼ç³»ç»è¯è¨ãSiriè¯è¨å设置为
ç®ä½ä¸æï¼æ®éè¯ï¼/ä¸å½ï¼English(USA)æå ¶ä»ä»»ä½åå°Appleæºè½æ¯æçè¯è¨åå°åºââè®¾ç½®ä¸ºå ¶ä»ä¸æ¯æApple AIçåºåä¼å¯¼è´å¼å¯å¤±è´¥ã - 稳å®çäºèç½è¿æ¥ä»¥ä¸è½½èæ¬ã
- SIP (System Integrity Protection) å·²ç¦ç¨ãï¼ç ´è§£å®æåå¯éæ°å¼å¯ï¼ä¸å½±åAIåè½ï¼
æ§è¡æ¥éª¤
è¯·ä¸¥æ ¼æç §ä»¥ä¸æ¥éª¤æä½ï¼
æ¥éª¤ 1: ç¦ç¨ System Integrity Protection (SIP)
妿 SIP å·²ç»ç¦ç¨ï¼å¯ä»¥è·³è¿æ¤æ¥éª¤ã妿æªç¦ç¨ï¼æ¨å¿ é¡»æå¨ç¦ç¨å®ï¼
- éå¯ Macã
- å¨ Mac å¯å¨æ¶ï¼é¿æå¼æºé®ï¼ç´å°è¿å ¥ macOS æ¢å¤æ¨¡å¼ï¼éä¸ä½ å¯è½éè¦è¾å ¥å 次å¯ç ã
- å¨å±å¹é¡¶é¨çèåæ ä¸ï¼éæ© å®ç¨å·¥å · (Utilities) > **ç»ç«¯ (Terminal)**ã
- å¨ç»ç«¯çªå£ä¸ï¼è¾å
¥ä»¥ä¸å½ä»¤å¹¶æå车ï¼
csrutil disable - æyé®ç¡®è®¤ï¼ä¹åæ¨ä¼çå°ä¸æ¡ SIP å·²ç¦ç¨çæ¶æ¯ã
- å¨ç»ç«¯ä¸ï¼è¾å
¥
rebootå¹¶æåè½¦ï¼æè ä» Apple èåä¸éæ© éå¯ (Restart) éåºæ¢å¤æ¨¡å¼å¹¶å¯å¨ Macã
æ¥éª¤ 2: ä¸è½½å¹¶è¿è¡èæ¬
åå½ä»¤å¿«éæ§è¡æ¹æ³:
妿æ¨å®å ¨ä¿¡ä»»æ¬èæ¬ï¼å¯ä»¥ä½¿ç¨ä»¥ä¸åå½ä»¤ç´æ¥æ§è¡ï¼
ææ°3.1èæ¬ï¼
curl -sL https://raw.githubusercontent.com/kanshurichard/enableAppleAI/main/enable_ai.sh | bash
妿å¨å½å 访é®å°é¾ï¼è¯·å°è¯ä»¥ä¸å½å å éå°åï¼
curl -sL https://cdn.jsdelivr.net/gh/kanshurichard/enableAppleAI@main/enable_ai.sh | bash
妿æ¬çéå°é®é¢ï¼è¯·æ¨å»æIssueï¼å¹¶å¯å°è¯2.13æ§çï¼
curl -sL https://raw.githubusercontent.com/kanshurichard/enableAppleAI/main/enable_ai_old.sh | bash
æå¨æ§è¡èæ¬:
- æå¼ ç»ç«¯ (Terminal) åºç¨ç¨åºã
- 使ç¨
curlä¸è½½èæ¬æä»¶å°å½åç®å½ï¼curl -O https://raw.githubusercontent.com/kanshurichard/enableAppleAI/main/enable_ai.sh - 审æ¥èæ¬å
å®¹ï¼ ä½¿ç¨ææ¬ç¼è¾å¨æå½ä»¤è¡å·¥å
·ï¼å¦
cat enable_ai.shï¼ä»ç»é 读ä¸è½½çenable_ai.shæä»¶ï¼ç¡®ä¿æ¨çè§£å®å°æ§è¡çæä½ã - èµäºèæ¬æ§è¡æéï¼
chmod +x enable_ai.sh - æ§è¡èæ¬ï¼
./enable_ai.sh
æ¥éª¤ 3: æç §èæ¬æç¤ºæä½
èæ¬å®ææ§è¡åï¼
- é坿¨ç Macã
- éå¯åï¼å次åå¾ ç³»ç»è®¾ç½® (System Settings) > éç¨ (General) > Apple æºè½ (Apple Intelligence) æ£æ¥åè½ç¶æã
- 妿 Apple æºè½ä»ä¸ºå¼å¯ç¶æï¼å¹¶ä¸æ¨å¸ææ¢å¤ç³»ç»çå®å
¨æ§ï¼**强ç建议**æ¨å次è¿å
¥æ¢å¤æ¨¡å¼ï¼æ§è¡
csrutil enableå½ä»¤éæ°å¯ç¨ SIPã
æ éæé¤ä¸åé¦
- å¦æèæ¬æ§è¡è¿ç¨ä¸éå°é误ï¼è¯·æ£æ¥ç»ç«¯è¾åºçé误信æ¯ã
- 妿æç §æ¥éª¤æ§è¡å Apple æºè½æªè½æåå¯ç¨ï¼æè åºç°å ¶ä»å¼å¸¸ï¼æ¨ä¹å¯ä»¥å¨æ¬é¡¹ç®ç GitHub Issues ä¸æäº¤é®é¢ã
常è§é®é¢
é®ï¼å¦ä½å¸è½½ï¼
çï¼3.Xçæ¬å·²ç»å å
¥äºä¸é®å¸è½½åè½ã
é®ï¼ä¹åå¨èçæ¬ç³»ç»ï¼æ¯å¦15.Xï¼ä¸è¿è¡è¿ä»£ç ï¼ç°å¨æ´æ°äºæ°çç³»ç»ï¼æ¯å¦26.Xï¼ï¼ä¸ºä»ä¹æ°ç³»ç»æ°å¢çæäºAIåè½æ²¡æåºç°ï¼
çï¼æ¬ä»£ç ä¼éçç³»ç»æ´æ°ä¸æéé
æ°å¢çAIåè½ï¼æ¯å¦Foundation Modelï¼ï¼è¯·å次æ§è¡æ°ç代ç 以å¼å¯æ°çç³»ç»æ°å¢æ¯æçAIåè½ãæ§è¡å请ãå
å¸è½½è代ç ï¼ä¹åéå¯ï¼åæ§è¡æ°ä»£ç ãã
é®ï¼è½å¦å¨ç»å½å½åºè´¦å·ä¸ºiCloudæ¶å¼å¯AIï¼
çï¼ç®å3.Xçæ¬æ®æ¥å·²ç»å¯ä»¥å®ç°è¿ä¸ªåè½ã
é®ï¼æ§è¡eligibilitydç¸å
³ç注å
¥ä»£ç æ¶æ¥éï¼æä¹åï¼
çï¼3.0çæ¬å·²ä¸åæè¿ä¸ªé®é¢ï¼è¯·ç«å»å°è¯3.0æ°ç代ç ã
é®ï¼å¼å¯AIåï¼Siriè°ç¨çä»ç¶æ¯ç¾åº¦ç¾ç§è¿ç±»å½å
å·¥å
·ï¼ChatGPT乿 æ³æ£å¸¸è°ç¨ï¼æä¹åï¼
çï¼å¨26.Xç³»ç»ä¸ï¼è¯·ä½¿ç¨3.Xçæ¬ä»£ç è§£éï¼å³å¯å¼å¯SiriçChatGPTï¼ä»éè¦åæ¯æå°åºçIPå°åï¼ãå¨15.Xç³»ç»ä¸ï¼Siriå¹¶ä¸ä½¿ç¨æºå代ç ï¼èæ¯ä½¿ç¨ä½ çIPå°ååWifiå®ä½ï¼å¤ææ¯å¦è°ç¨å½å
æå¡ï¼å¦ç¾åº¦ï¼ï¼å³ä½¿å¨å¤çæºåä¸ï¼ä¹æ¯è¿æ ·çã请å¨è®¾ç½®-éç§ä¸å®å
¨æ§-å®ä½æå¡ä¸å
³éSiriçå®ä½æéï¼å¹¶èèå°ææç¸å
³URLæ¾å
¥ä»£çååï¼å¦éæ´å¤å¸®å©ï¼å¯åèï¼https://nsringo.github.ioã
é®ï¼å¾ä¹åï¼Image Playgroundï¼æ æ³å建å¾ççåå ï¼
çï¼å¾ä¹åç®å䏿¯æä¸æè¯è¨ä¸å建å¾çï¼è¯·å°ç³»ç»è¯è¨æ¹ä¸ºè±è¯ï¼ç¾å½ï¼ï¼å³å¯æ£å¸¸ä½¿ç¨ï¼ä¼¼ä¹MacOS26ç³»ç»ä¸å·²ç»æ¯æäºä¸æç¯å¢ä¸å¾ä¹åï¼ã
é®ï¼æ¯å¦è½å¼å¯ç¹ä½ä¸æï¼æå
¶ä»XXè¯è¨ï¼çAppleæºè½ï¼
çï¼åå³äºAppleæºè½æ¬èº«æ¯å¦æ¯æè¯¥è¯è¨ãå¦æè¯¥è¯è¨å°æªå¾å°æ¯æï¼å³ä½¿å¨MacOS强å¶å¼å¯äºAppleæºè½ï¼ä¹ä¸è½½ä¸å°å¯¹åºçè¯è¨æä»¶ï¼ä¼ä¸ç´å¡å¨ä¸è½½ç¶æï¼ã
Top Related Projects
Stable Diffusion with Core ML on Apple Silicon
🤗 Diffusers: State-of-the-art diffusion models for image, video, and audio generation in PyTorch.
High-Resolution Image Synthesis with Latent Diffusion Models
Stable Diffusion web UI
Convert
designs to code with AI
Introducing Visual Copilot: A new AI model to turn Figma designs to high quality code using your components.
Try Visual Copilot